If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x-19=0
a = 3; b = 12; c = -19;
Δ = b2-4ac
Δ = 122-4·3·(-19)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{93}}{2*3}=\frac{-12-2\sqrt{93}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{93}}{2*3}=\frac{-12+2\sqrt{93}}{6} $
| (=2x+6)+(x+9) | | 15+3x=23–x | | 16/9v=36 | | k+1.25=12.5 | | 13u-7u=24 | | (=7x-1)+(8x-14) | | -15x+21=17 | | 7(6x+56)=7(-6x+56) | | 42k=0 | | (=6x+17)+(7x-3) | | 4x-1=2x=14 | | 9x=10x+3 | | 15x-21=17 | | (=3x-22)+(2x-5)= | | -5y+6=-19+7 | | 11x–5=250 | | 5=w{2.2}5=2.2w | | 3x/6+2x/6-1=x/6+3 | | 5y+2(y-3=92 | | 4x·1=4x | | 9+4x=-10x–5 | | 2(2u+8)=60 | | (4)^2x-1=24 | | 1x+2x+5x=180° | | 40.8=4y | | 4(x–21 )=x–6 | | 2.5y+5=10.5 | | 5x/6=x/6+3 | | 21x=462 | | 3-1.5v=-3(0.8v+0.2) | | .5z=35.5 | | 3-1.5v=-3(0.8v+0.2 |